Exercise Sheet 1

Discussed on 14.04.2021

Definition. Let k be a field and let $\left(G, m_{G}\right)$ and $\left(H, m_{H}\right)$ be group schemes over k. Then a group homomorphism $\varphi: G \rightarrow H$ is a morphism of k-schemes such that $m_{H} \circ(\varphi \times \varphi)=\varphi \circ m_{G}$. Given such a φ, we define $\operatorname{ker} \varphi \hookrightarrow G$ as the fiber product $\operatorname{ker} \varphi=G \times_{H, e_{H}} \operatorname{Spec} k$, where $e_{H}: \operatorname{Spec} k \hookrightarrow H$ is the neutral element map.

Problem 1. Let k be a field. Show that the group endomorphisms $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ are precisely the n-th power maps $[n]: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ for $n \in \mathbb{Z}$. More generally, find all group homomorphisms $\mathbb{G}_{m}^{n} \rightarrow \mathbb{G}_{m}^{l}$ for integers $n, l>0$.

Problem 2. Let k be a field.
(a) Let $\mathbb{G}_{a}:$ Sch $/ k \rightarrow$ Grp be the functor which assigns to every k-scheme S the group $\left(\mathcal{O}_{S}(S),+\right)$ of global sections. Show that \mathbb{G}_{a} is an affine group scheme by explicitly writing down its coordinate ring and multiplication map.
(b) The underlying scheme of the group scheme GL_{n} is

$$
\operatorname{GL}_{n}=\operatorname{Spec}\left(k\left[T_{i, j}\right]_{i, j=1}^{n}[S] /\left(S \cdot \operatorname{det}\left(T_{i, j}\right)-1\right)\right) .
$$

Write down the multiplication map $m: \mathrm{GL}_{n} \times \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n}$ as a map on the coordinate rings.
Problem 3. Let k be a field.
(a) Given an group scheme G over k, show that the neutral element map e_{G} : Spec $k \rightarrow G$ is a closed immersion.
(b) Given a group homomorphism $\varphi: G \rightarrow H$ of group schemes over k, show that $\operatorname{ker} \varphi$ can naturally be made into a group scheme such that for every k-scheme S,

$$
(\operatorname{ker} \varphi)(S)=\operatorname{ker}(G(S) \rightarrow H(S))
$$

as groups.
Problem 4. Let k be a field.
(a) For every integer $n>0$ we define

$$
\mu_{n}:=\operatorname{ker}\left([n]: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}\right),
$$

where [n] denotes the n-th power map (see Problem 1). Compute the coordinate ring of μ_{n} and determine the multiplication map on the coordinate ring.
(b) Show that if k is algebraically closed and n is invertible in k then $\mu_{n} \cong(\mathbb{Z} / n \mathbb{Z})_{k}$ is a constant group scheme. What does μ_{p} look like if k has characteristic p ?

